LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS
 THIRD SEMESTER - NOVEMBER 2022

17/18UMT3MCO2 - VECTOR ANALYSIS AND ORDINARY DIFF. EQUATIONS

Date: 03-12-2022
Time: 09:00 AM - 12:00 NOON \square Max. : 100 Marks

PART - A

Answer ALL questions:
(10 $\times 2$ = 20 Marks $)$

1. When do you say a vector is solenoidal and irrotational?
2. If $=x^{2} y^{3} z^{2}$, find $\nabla \varphi$.
3. Show that $\vec{F}=\left(2 x y+z^{3}\right) \vec{\imath}+x^{2} \vec{\jmath}+3 x z^{2} \vec{k}$ is a conservative vector field.
4. State Stoke's theorem.
5. Evaluate $\int \vec{F}$. $d \vec{r}$ where $\vec{F}=x^{2} \vec{\imath}+y^{2} \vec{\jmath}$ along the line $y=x$ from $A(0,0)$ to $B(1,1)$.
6. Find the unit vector normal to the surface $\phi=x y z-1$ at the point $(1,1,1)$.
7. Solve $\frac{d y}{d x}=\frac{y+2}{x+3}$.
8. Find the general solution of $y=x p+\frac{\alpha}{p}$.
9. Find the complete integral of $\left(D^{2}-9\right) y=0$.
10. Define Cauchy Euler equation.

PART - B

Answer any FIVE questions: ($5 \times 8=40$ Marks $)$
11. Prove that for any vector $\vec{F}, \nabla \times(\nabla \times \vec{F})=\nabla(\nabla \cdot \vec{F})-\nabla^{2} \vec{F}$.
12. Show that (a) $\nabla(1 / r)=-\vec{r} / r^{3}$ (b) $\nabla f(r)=f^{\prime}(r) \hat{r}$, where $r=x \vec{\imath}+y \vec{\jmath}+z \vec{k}$ and $|\vec{r}|=\hat{r}$.
13. Evaluate $\iint_{S} \vec{F}$.n ds where $\vec{F} . \vec{n}=z \vec{x}+x \vec{\jmath}-y^{2} z \vec{k}$ and S is the surface of the cylinder $x^{2}+y^{2}=1$ included in the first octant between $z=0$ and $z=2$.
14. Verify Stoke's theorem for $A=x y \vec{\imath}+y z \vec{\jmath}+x z \vec{k}$ taken over the triangular surface S in the plane $x+y+$ $z=1$ bounded by the planes $x=0, y=0, z=0$.
15. By Green's theorem, find the value of $\int_{c} x^{2} y d x+y d y$ along the closed curve C formed by $y^{2}=x$ and $y=x$ between $(0,0)$ and $(1,1)$.
16. Solve $x p^{2}-2 y p+x=0$.
17. Find the solution of $\left(D^{2}-4 D+3\right) y=e^{-x} \sin x$.
18. Solve $3 x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=x$.

PART - C

Answer any TWO questions:

19. a) Find the value of a if $A=\left(a x y-z^{2}\right) \vec{\imath}+\left(x^{2}+2 y z\right) \vec{\jmath}+\left(y^{2}-a x z\right) \vec{k}$ is irrotational. (10)
b) Find the maximum value of the directional derivative of the function $\emptyset=2 x^{2}+3 y^{2}+5 z^{2}$ at the point (1,1, -4).
20. (a) Evaluate $\iint_{s} \vec{F} . n d s$ where $\vec{F}=z \vec{\imath}+y^{2} \vec{\jmath}+y z \vec{k}$ and S is the surface of the cylinder $x^{2}+y^{2}=16$ included in the first octant between $\mathrm{z}=0$ and $\mathrm{z}=5$.
(b) Verify divergence theorem for $\vec{A}=4 x \vec{\imath}-2 y^{2} \vec{\jmath}+z^{2} \vec{k}$ taken over region bounded by the surfaces $x^{2}+y^{2}=4, z=0$ and $z=3$.
21. (a) Solve $y=x p+x\left(1+p^{2}\right)^{\frac{1}{2}}$.
(b) Solve $\left(D^{2}-4 D-5\right) y=\cos x+e^{-x}$.
22. Solve $\frac{d^{2} y}{d x^{2}}+y=\sec x$, using variation of parameters.
