LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

THIRD SEMESTER - NOVEMBER 2022

17/18UMT3MC02 - VECTOR ANALYSIS AND ORDINARY DIFF. EQUATIONS

Date: 03-12-2022 Dept. No. Max. : 100 Marks

Time: 09:00 AM - 12:00 NOON

PART - A

Answer ALL questions:

 $(10 \times 2 = 20 \text{ Marks})$

- 1. When do you say a vector is solenoidal and irrotational?
- 2. If $= x^2 y^3 z^2$, find $\nabla \varphi$.
- 3. Show that $\vec{F} = (2xy + z^3)\vec{i} + x^2\vec{j} + 3xz^2\vec{k}$ is a conservative vector field.
- 4. State Stoke's theorem.
- 5. Evaluate $\int \vec{F} \cdot d\vec{r}$ where $\vec{F} = x^2 \vec{i} + y^2 \vec{j}$ along the line y = x from A(0, 0) to B(1, 1).
- 6. Find the unit vector normal to the surface $\phi = xyz 1$ at the point (1,1,1).
- 7. Solve $\frac{dy}{dx} = \frac{y+2}{x+3}$.
- 8. Find the general solution of $y = xp + \frac{\alpha}{p}$.
- 9. Find the complete integral of $(D^2 9)y = 0$.
- 10. Define Cauchy Euler equation.

PART - B

Answer any FIVE questions:

 $(5 \times 8 = 40 \text{ Marks})$

- 11. Prove that for any vector \vec{F} , $\nabla \times (\nabla \times \vec{F}) = \nabla(\nabla \cdot \vec{F}) \nabla^2 \vec{F}$.
- 12. Show that (a) $\nabla(1/r) = -\vec{r}/r^3$ (b) $\nabla f(r) = f'(r)\hat{r}$, where $r = x\vec{i} + y\vec{j} + z\vec{k}$ and $|\vec{r}| = \hat{r}$.
- 13. Evaluate $\iint_S \vec{F} \cdot n \ ds$ where $\vec{F} \cdot \vec{n} = z\vec{x} + x\vec{j} y^2z\vec{k}$ and S is the surface of the cylinder $x^2 + y^2 = 1$ included in the first octant between z = 0 and z = 2.
- 14. Verify Stoke's theorem for $A = xy\vec{i} + yz\vec{j} + xz\vec{k}$ taken over the triangular surface S in the plane x + y + z = 1 bounded by the planes x = 0, y = 0, z = 0.
- 15. By Green's theorem, find the value of $\int_c x^2 y dx + y dy$ along the closed curve C formed by $y^2 = x$ and y = x between (0,0) and (1,1).
- 16. Solve $xp^2 2yp + x = 0$.
- 17. Find the solution of $(D^2 4D + 3)y = e^{-x}sinx$.
- 18. Solve $3x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = x$.

PART - C

Answer any TWO questions:

 $(2 \times 20 = 40 \text{ Marks})$

- 19. a) Find the value of a if $A = (axy z^2)\vec{i} + (x^2 + 2yz)\vec{j} + (y^2 axz)\vec{k}$ is irrotational. (10)
 - b) Find the maximum value of the directional derivative of the function $\emptyset = 2x^2 + 3y^2 + 5z^2$ at the point (1,1,-4).
- 20. (a) Evaluate $\iint_S \vec{F} \cdot n \, ds$ where $\vec{F} = z\vec{i} + y^2\vec{j} + yz\vec{k}$ and S is the surface of the cylinder $x^2 + y^2 = 16$ included in the first octant between z = 0 and z = 5. (10)
 - (b) Verify divergence theorem for $\vec{A} = 4x\vec{\imath} 2y^2\vec{\jmath} + z^2\vec{k}$ taken over region bounded by the surfaces $x^2 + y^2 = 4$, z = 0 and z = 3. (10)
- 21. (a) Solve $y = xp + x(1+p^2)^{\frac{1}{2}}$. (10)
 - (b) Solve $(D^2 4D 5)y = \cos x + e^{-x}$. (10)
- 22. Solve $\frac{d^2y}{dx^2} + y = \sec x$, using variation of parameters. (20)
